33 research outputs found

    Bridging the Gap: Heterogeneous Face Recognition with Conditional Adaptive Instance Modulation

    Full text link
    Heterogeneous Face Recognition (HFR) aims to match face images across different domains, such as thermal and visible spectra, expanding the applicability of Face Recognition (FR) systems to challenging scenarios. However, the domain gap and limited availability of large-scale datasets in the target domain make training robust and invariant HFR models from scratch difficult. In this work, we treat different modalities as distinct styles and propose a framework to adapt feature maps, bridging the domain gap. We introduce a novel Conditional Adaptive Instance Modulation (CAIM) module that can be integrated into pre-trained FR networks, transforming them into HFR networks. The CAIM block modulates intermediate feature maps, to adapt the style of the target modality effectively bridging the domain gap. Our proposed method allows for end-to-end training with a minimal number of paired samples. We extensively evaluate our approach on multiple challenging benchmarks, demonstrating superior performance compared to state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.Comment: Accepted for publication in IJCB 202

    Learning One Class Representations for Face Presentation Attack Detection using Multi-channel Convolutional Neural Networks

    Full text link
    Face recognition has evolved as a widely used biometric modality. However, its vulnerability against presentation attacks poses a significant security threat. Though presentation attack detection (PAD) methods try to address this issue, they often fail in generalizing to unseen attacks. In this work, we propose a new framework for PAD using a one-class classifier, where the representation used is learned with a Multi-Channel Convolutional Neural Network (MCCNN). A novel loss function is introduced, which forces the network to learn a compact embedding for bonafide class while being far from the representation of attacks. A one-class Gaussian Mixture Model is used on top of these embeddings for the PAD task. The proposed framework introduces a novel approach to learn a robust PAD system from bonafide and available (known) attack classes. This is particularly important as collecting bonafide data and simpler attacks are much easier than collecting a wide variety of expensive attacks. The proposed system is evaluated on the publicly available WMCA multi-channel face PAD database, which contains a wide variety of 2D and 3D attacks. Further, we have performed experiments with MLFP and SiW-M datasets using RGB channels only. Superior performance in unseen attack protocols shows the effectiveness of the proposed approach. Software, data, and protocols to reproduce the results are made available publicly.Comment: 15 page

    An Improved Algorithm for Eye Corner Detection

    Full text link
    In this paper, a modified algorithm for the detection of nasal and temporal eye corners is presented. The algorithm is a modification of the Santos and Proenka Method. In the first step, we detect the face and the eyes using classifiers based on Haar-like features. We then segment out the sclera, from the detected eye region. From the segmented sclera, we segment out an approximate eyelid contour. Eye corner candidates are obtained using Harris and Stephens corner detector. We introduce a post-pruning of the Eye corner candidates to locate the eye corners, finally. The algorithm has been tested on Yale, JAFFE databases as well as our created database

    On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing

    Full text link
    The vulnerability of face recognition systems to presentation attacks has limited their application in security-critical scenarios. Automatic methods of detecting such malicious attempts are essential for the safe use of facial recognition technology. Although various methods have been suggested for detecting such attacks, most of them over-fit the training set and fail in generalizing to unseen attacks and environments. In this work, we use transfer learning from the vision transformer model for the zero-shot anti-spoofing task. The effectiveness of the proposed approach is demonstrated through experiments in publicly available datasets. The proposed approach outperforms the state-of-the-art methods in the zero-shot protocols in the HQ-WMCA and SiW-M datasets by a large margin. Besides, the model achieves a significant boost in cross-database performance as well.Comment: 8 pages, 3 figures, Accepted for Publication in IJCB202
    corecore